Transcriptional activation of TFEB/ZKSCAN3 target genes underlies enhanced autophagy in spinobulbar muscular atrophy.
نویسندگان
چکیده
Spinobulbar muscular atrophy (SBMA) is an inherited neuromuscular disorder caused by the expansion of a CAG repeat encoding a polyglutamine tract in exon 1 of the androgen receptor (AR) gene. SBMA demonstrates androgen-dependent toxicity due to unfolding and aggregation of the mutant protein. There are currently no disease-modifying therapies, but of increasing interest for therapeutic targeting is autophagy, a highly conserved cellular process mediating protein quality control. We have previously shown that genetic manipulations inhibiting autophagy diminish skeletal muscle atrophy and extend the lifespan of AR113Q knock-in mice. In contrast, manipulations inducing autophagy worsen muscle atrophy, suggesting that chronic, aberrant upregulation of autophagy contributes to pathogenesis. Since the degree to which autophagy is altered in SBMA and the mechanisms responsible for such alterations are incompletely defined, we sought to delineate autophagic status in SBMA using both cellular and mouse models. Here, we confirm that autophagy is induced in cellular and knock-in mouse models of SBMA and show that the transcription factors transcription factor EB (TFEB) and ZKSCAN3 operate in opposing roles to underlie these changes. We demonstrate upregulation of TFEB target genes in skeletal muscle from AR113Q male mice and SBMA patients. Furthermore, we observe a greater response in AR113Q mice to physiological stimulation of autophagy by both nutrient starvation and exercise. Taken together, our results indicate that transcriptional signaling contributes to autophagic dysregulation and provides a mechanistic framework for the pathologic increase of autophagic responsiveness in SBMA.
منابع مشابه
The Transcription Factor EB Links Cellular Stress to the Immune Response
The transcription factor EB (TFEB) is the master transcriptional regulator of autophagy and lysosome biogenesis. Recent advances have led to a paradigm shift in our understanding of lysosomes from a housekeeping cellular waste bin to a dynamically regulated pathway that is efficiently turned up or down based on cellular needs. TFEB coordinates the cellular response to nutrient deprivation and o...
متن کاملTranscriptional Profile of Muscle following Acute Induction of Symptoms in a Mouse Model of Kennedy's Disease/Spinobulbar Muscular Atrophy
BACKGROUND Kennedy's disease/Spinobulbar muscular atrophy (KD/SBMA) is a degenerative neuromuscular disease affecting males. This disease is caused by polyglutamine expansion mutations of the androgen receptor (AR) gene. Although KD/SBMA has been traditionally considered a motor neuron disease, emerging evidence points to a central etiological role of muscle. We previously reported a microarray...
متن کاملDisrupting SUMOylation enhances transcriptional function and ameliorates polyglutamine androgen receptor-mediated disease.
Expansion of the polyglutamine (polyQ) tract within the androgen receptor (AR) causes neuromuscular degeneration in individuals with spinobulbar muscular atrophy (SBMA). PolyQ AR has diminished transcriptional function and exhibits ligand-dependent proteotoxicity, features that have both been implicated in SBMA; however, the extent to which altered AR transcriptional function contributes to pat...
متن کاملPolyglutamine diseases: emerging concepts in pathogenesis and therapy.
Polyglutamine diseases are a family of neurodegenerative conditions that each derive from a CAG triplet repeat expansion in a specific gene. This produces a pathogenic protein that contains a critically expanded tract of glutamines. These prototypical protein misfolding disorders include Huntington disease, spinobulbar muscular atrophy, dentatorubral-pallidoluysian atrophy and several spinocere...
متن کاملFighting polyglutamine disease by wrestling with SUMO.
Spinobulbar muscular atrophy (SBMA) is an X-linked disease characterized by degeneration of motor neurons, muscle atrophy, and progressive weakness. It is caused by a polyglutamine (polyQ) expansion in the androgen receptor (AR), a transcription factor that is activated upon hormone binding. The polyQ expansion in AR causes it to form intracellular aggregates and impairs transcriptional activit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 23 5 شماره
صفحات -
تاریخ انتشار 2014